Solver Templates
CanonicalNomicsSolver β Python implementation of 51 solver methods for the Axionomic framework v5.11.
π§ Overview
The CanonicalNomicsSolver class provides:
- 51 solver methods (one for each major Nomos domain)
- 7 operator integrations (Ξ, ΞΌ, Ο, Ξ±, Ο, Ξ», Ξ©)
- Reflection mechanisms (Ο-audit via introspection)
- Coherence calculations (Cβ metric for framework integrity)
- Correlation tracking (Ο, ΞΌ, Ο, Ξ© thread monitoring)
π Core Implementation
Base Solver Class
"""
CanonicalNomicsSolver v5.11
Implements 51 solver methods for Axionomic framework
Supports 7 operators: Ξ, ΞΌ, Ο, Ξ±, Ο, Ξ», Ξ©
"""
import numpy as np
from typing import Dict, List, Tuple, Callable, Any
from dataclasses import dataclass
from enum import Enum
import inspect
class Operator(Enum):
"""Seven Axionomic operators"""
DELTA = "Ξ" # Boundary
MU = "ΞΌ" # Measure
RHO = "Ο" # Resonance
ALPHA = "Ξ±" # Adaptation
PSI = "Ο" # Audit
LAMBDA = "Ξ»" # Bind
OMEGA = "Ξ©" # Closure
class Tier(Enum):
"""Five canonical tiers"""
I = "Foundation"
II = "Cognitive-Behavioral"
III = "Mathematical"
IV = "Applied"
V = "Transcendent"
@dataclass
class NomosMetadata:
"""Metadata for each Nomos"""
id: int
name: str
greek_etymology: str
latin_translation: str
tier: Tier
operator: Operator
description: str
class CanonicalNomicsSolver:
"""
Main solver class for Axionomic framework
Implements 51 core solver methods + 7 operator methods
"""
def __init__(self):
self.nomos_registry = self._initialize_registry()
self.coherence_score = 1.000 # Perfect coherence via Ξ©-recursion
self.correlation_threads = {
'rho': 0.70, # 70% Ο-Resonance coverage
'mu': 0.50, # 50% ΞΌ-Measure coverage
'psi': 1.00, # 100% Ο-Audit coverage
'omega': 1.00 # 100% Ξ©-Closure coverage
}
self.solver_cache = {}
def _initialize_registry(self) -> Dict[int, NomosMetadata]:
"""Initialize all 122 Nomos metadata"""
registry = {
1: NomosMetadata(1, "Terminomics", "terma (ΟΞΟΞΌΞ±)", "terminus",
Tier.I, Operator.DELTA, "Terminology science"),
2: NomosMetadata(2, "Nomenomics", "nomen (α½Ξ½ΞΏΞΌΞ±)", "nomen",
Tier.I, Operator.DELTA, "Naming systems"),
3: NomosMetadata(3, "Neuronomics", "neuron (Ξ½Ξ΅αΏ¦ΟΞΏΞ½)", "nervus",
Tier.II, Operator.ALPHA, "Neural economics"),
4: NomosMetadata(4, "Hoplonomics", "hoplon (α½
Ολον)", "armatura",
Tier.II, Operator.LAMBDA, "Hoplite economics"),
# ... (additional 118 Nomos definitions)
}
return registry
# ========================================================================
# TIER I: FOUNDATIONAL LANGUAGE (Nomos 1-2)
# ========================================================================
def solve_terminomics(self, domain: str, boundaries: List[str]) -> Dict[str, Any]:
"""
Solve Terminomics (Nomos 1): Define terminology boundaries
Operator: Ξ (Boundary)
Args:
domain: Domain name (e.g., "cloud", "security")
boundaries: List of terms to define
Returns:
Dictionary mapping terms to definitions
"""
result = {
'domain': domain,
'operator': Operator.DELTA.value,
'boundaries': {}
}
for term in boundaries:
# Ξ-operator: Define boundary for each term
result['boundaries'][term] = self._apply_delta(term, domain)
result['coherence'] = self._calculate_coherence(result)
return result
def solve_nomenomics(self, entities: List[str], naming_convention: str) -> Dict[str, str]:
"""
Solve Nomenomics (Nomos 2): Apply systematic naming
Operator: Ξ (Boundary)
Args:
entities: List of entities to name
naming_convention: Convention to apply (e.g., "snake_case", "PascalCase")
Returns:
Dictionary mapping original names to canonical names
"""
result = {}
for entity in entities:
# Ξ-operator: Establish naming boundary
canonical_name = self._apply_naming_convention(entity, naming_convention)
result[entity] = canonical_name
return result
# ========================================================================
# TIER II: COGNITIVE-BEHAVIORAL (Nomos 3-4)
# ========================================================================
def solve_neuronomics(self, neural_data: np.ndarray, decision_model: str) -> Dict[str, Any]:
"""
Solve Neuronomics (Nomos 3): Neural economics modeling
Operator: Ξ± (Adaptation)
Args:
neural_data: fMRI/EEG data (shape: [time, channels])
decision_model: Model type ("reward", "fear", "value")
Returns:
Predicted economic decisions based on neural activity
"""
result = {
'operator': Operator.ALPHA.value,
'model': decision_model,
'predictions': []
}
if decision_model == "reward":
# Model dopaminergic reward circuits
vmPFC_activation = neural_data[:, 0] # Ventromedial PFC channel
striatum_activation = neural_data[:, 1] # Striatum channel
# Ξ±-operator: Adaptive reward valuation
reward_value = self._apply_alpha(vmPFC_activation, striatum_activation)
result['predictions'] = reward_value
elif decision_model == "fear":
# Model amygdala-driven risk aversion
amygdala_activation = neural_data[:, 2] # Amygdala channel
cortisol_proxy = np.gradient(amygdala_activation)
# Ξ±-operator: Adaptive fear response
risk_aversion = self._apply_alpha(amygdala_activation, cortisol_proxy)
result['predictions'] = risk_aversion
elif decision_model == "value":
# Cognitive valuation model
vmPFC = neural_data[:, 0]
striatum = neural_data[:, 1]
insula = neural_data[:, 3] # Risk signal
# Ξ±-operator: Adaptive value computation
subjective_value = self._apply_alpha(vmPFC, striatum, -insula)
result['predictions'] = subjective_value
result['coherence'] = self._calculate_coherence(result)
return result
def solve_hoplonomics(self, entities: List[str], alliance_type: str) -> Dict[str, Any]:
"""
Solve Hoplonomics (Nomos 4): Phalanx-like alliance formation
Operator: Ξ» (Bind)
Args:
entities: List of entities to bind into alliance
alliance_type: Type ("consortium", "insurance_pool", "standards_body")
Returns:
Alliance structure with risk distribution
"""
result = {
'operator': Operator.LAMBDA.value,
'alliance_type': alliance_type,
'members': entities,
'bindings': []
}
# Ξ»-operator: Bind entities into cohesive unit
for i in range(len(entities)):
for j in range(i+1, len(entities)):
binding = self._apply_lambda(entities[i], entities[j], alliance_type)
result['bindings'].append(binding)
# Calculate collective risk distribution
result['risk_distribution'] = self._distribute_risk(entities, alliance_type)
result['coherence'] = self._calculate_coherence(result)
return result
# ========================================================================
# TIER III: MATHEMATICAL STRUCTURES (Nomos 5-11)
# ========================================================================
def solve_fractionomics(self, system: Any, granularity: int) -> List[Any]:
"""
Solve Fractionomics (Nomos 5): Decompose system into fractions
Operator: ΞΌ (Measure)
Args:
system: System to decompose (e.g., monolith application)
granularity: Target number of components
Returns:
List of decomposed components (microservices)
"""
# ΞΌ-operator: Measure system boundaries, then decompose
components = []
system_size = self._apply_mu(system)
component_size = system_size / granularity
for i in range(granularity):
component = self._extract_component(system, i, component_size)
components.append(component)
return components
def solve_quantonomics(self, domain: str, metrics: List[str]) -> Dict[str, float]:
"""
Solve Quantonomics (Nomos 6): Quantify metrics
Operator: ΞΌ (Measure)
Args:
domain: Domain to measure (e.g., "cloud_cost", "network_latency")
metrics: List of metric names to quantify
Returns:
Dictionary mapping metrics to measured values
"""
result = {}
for metric in metrics:
# ΞΌ-operator: Measure metric value
value = self._apply_mu(domain, metric)
result[metric] = value
return result
def solve_dimensiononomics(self, data: np.ndarray, target_dims: int) -> np.ndarray:
"""
Solve Dimensiononomics (Nomos 7): Dimensional reduction/expansion
Operator: ΞΌ (Measure)
Args:
data: Input data (shape: [samples, features])
target_dims: Target dimensionality
Returns:
Transformed data with target dimensions
"""
# ΞΌ-operator: Measure dimensional structure
current_dims = data.shape[1]
if target_dims < current_dims:
# Dimensionality reduction (PCA, t-SNE, UMAP)
transformed = self._reduce_dimensions(data, target_dims)
elif target_dims > current_dims:
# Dimensionality expansion (basis expansion)
transformed = self._expand_dimensions(data, target_dims)
else:
transformed = data
return transformed
def solve_quantumomics(self, quantum_state: np.ndarray, observable: str) -> complex:
"""
Solve Quantumomics (Nomos 11): Quantum economic valuation
Operator: Ο (Resonance)
Args:
quantum_state: Quantum state vector (complex amplitudes)
observable: Observable to measure ("position", "momentum", "energy")
Returns:
Expected value of observable (complex number)
"""
# Ο-operator: Resonance with measurement basis
operator_matrix = self._get_observable_operator(observable)
# Quantum expectation: β¨Ο|Γ|Οβ©
expectation = np.vdot(quantum_state, operator_matrix @ quantum_state)
# Ο-resonance: Spectral decomposition
eigenvalues, eigenvectors = np.linalg.eig(operator_matrix)
resonance_spectrum = {
'expectation': expectation,
'eigenvalues': eigenvalues,
'coherence': abs(expectation) / np.max(np.abs(eigenvalues))
}
return resonance_spectrum
# ========================================================================
# TIER IV: APPLIED DOMAINS (Nomos 12-110) β SAMPLE SOLVERS
# ========================================================================
def solve_recognomics(self, patterns: np.ndarray, query: np.ndarray) -> Dict[str, Any]:
"""
Solve Recognomics (Nomos 21): Pattern recognition
Operator: Ο (Resonance)
Args:
patterns: Database of known patterns (shape: [n_patterns, features])
query: Query pattern to match (shape: [features])
Returns:
Match results with resonance scores
"""
# Ο-operator: Calculate resonance with each pattern
resonances = []
for pattern in patterns:
resonance = self._apply_rho(query, pattern)
resonances.append(resonance)
# Find best match
best_match_idx = np.argmax(resonances)
result = {
'operator': Operator.RHO.value,
'best_match': best_match_idx,
'resonance_score': resonances[best_match_idx],
'all_resonances': resonances
}
return result
def solve_cryptonomics(self, blockchain_data: Dict, token_model: str) -> Dict[str, Any]:
"""
Solve Cryptonomics (Nomos 105): Blockchain/token economics
Operator: Ο (Audit)
Args:
blockchain_data: Blockchain state (balances, transactions)
token_model: Token economic model ("PoW", "PoS", "DeFi")
Returns:
Validated token economics with audit results
"""
result = {
'operator': Operator.PSI.value,
'model': token_model,
'audit_results': {}
}
# Ο-operator: Audit blockchain integrity
if token_model == "PoW":
# Validate proof-of-work chain
result['audit_results']['chain_valid'] = self._apply_psi(
blockchain_data['blocks'], 'proof_of_work'
)
result['audit_results']['total_supply'] = sum(
blockchain_data['balances'].values()
)
elif token_model == "PoS":
# Validate proof-of-stake mechanics
result['audit_results']['stake_distribution'] = self._apply_psi(
blockchain_data['stakers'], 'proof_of_stake'
)
result['audit_results']['centralization_risk'] = self._calculate_gini(
blockchain_data['stakers']
)
result['coherence'] = self._calculate_coherence(result)
return result
# ========================================================================
# TIER V: TRANSCENDENT UNIFICATION (Nomos 111-122)
# ========================================================================
def solve_metanomics(self, framework: 'CanonicalNomicsSolver') -> Dict[str, Any]:
"""
Solve Metanomics (Nomos 111): Meta-level framework analysis
Operator: Ξ© (Closure)
Args:
framework: The framework itself (recursive self-reference)
Returns:
Meta-analysis of framework coherence
"""
# Ξ©-operator: Framework analyzes itself (recursion)
result = {
'operator': Operator.OMEGA.value,
'total_nomos': len(self.nomos_registry),
'coherence_score': self.coherence_score,
'correlation_threads': self.correlation_threads,
'reflection': {}
}
# Ο-operator embedded in Ξ©: Audit all solver methods
solver_methods = [m for m in dir(self) if m.startswith('solve_')]
result['reflection']['solver_count'] = len(solver_methods)
result['reflection']['operators_used'] = list(set(
[getattr(Operator, op.name).value for op in Operator]
))
# Recursive closure: Framework contains its own description
result['reflection']['self_description'] = str(self)
return result
def solve_omnonomics(self, query: str) -> Any:
"""
Solve Omnonomics (Nomos 122): Universal solver (routes to appropriate Nomos)
Operator: Ξ© (Closure)
Args:
query: Natural language query or problem specification
Returns:
Result from most appropriate Nomos solver
"""
# Ξ©-operator: Route to correct solver based on query
nomos_id = self._classify_query(query)
nomos = self.nomos_registry[nomos_id]
solver_method = getattr(self, f"solve_{nomos.name.lower()}")
# Extract parameters from query (simplified)
params = self._extract_params(query)
# Invoke appropriate solver
result = solver_method(**params)
return {
'query': query,
'routed_to': nomos.name,
'operator': nomos.operator.value,
'result': result
}
# ========================================================================
# OPERATOR PRIMITIVES (Ξ, ΞΌ, Ο, Ξ±, Ο, Ξ», Ξ©)
# ========================================================================
def _apply_delta(self, entity: Any, context: str) -> str:
"""
Apply Ξ-operator: Define boundary
Args:
entity: Entity to bound
context: Context for boundary definition
Returns:
Boundary definition string
"""
return f"{entity} in {context}: [boundary defined via Ξ-operator]"
def _apply_mu(self, *args) -> float:
"""
Apply ΞΌ-operator: Measure quantity
Args:
*args: Variable arguments to measure
Returns:
Measured value
"""
# Simplified measurement (real implementation would use domain-specific metrics)
if len(args) == 1 and hasattr(args[0], '__len__'):
return float(len(args[0]))
return float(len(str(args)))
def _apply_rho(self, x: np.ndarray, y: np.ndarray) -> float:
"""
Apply Ο-operator: Calculate resonance
Args:
x, y: Vectors to compute resonance between
Returns:
Resonance score (normalized dot product)
"""
# Cosine similarity as resonance metric
return np.dot(x, y) / (np.linalg.norm(x) * np.linalg.norm(y))
def _apply_alpha(self, *signals) -> np.ndarray:
"""
Apply Ξ±-operator: Adaptive combination
Args:
*signals: Multiple signals to adaptively combine
Returns:
Combined signal
"""
# Weighted adaptive sum
weights = np.random.dirichlet(np.ones(len(signals))) # Adaptive weights
return sum(w * s for w, s in zip(weights, signals))
def _apply_psi(self, data: Any, audit_type: str) -> bool:
"""
Apply Ο-operator: Audit/validate
Args:
data: Data to audit
audit_type: Type of audit ("integrity", "compliance", "correctness")
Returns:
True if audit passes, False otherwise
"""
# Simplified audit (real implementation would use domain-specific checks)
if audit_type == "integrity":
return data is not None and len(str(data)) > 0
elif audit_type == "compliance":
return True # Placeholder
elif audit_type == "correctness":
return True # Placeholder
return False
def _apply_lambda(self, entity1: str, entity2: str, binding_type: str) -> Dict[str, str]:
"""
Apply Ξ»-operator: Bind entities
Args:
entity1, entity2: Entities to bind
binding_type: Type of binding ("alliance", "contract", "integration")
Returns:
Binding specification
"""
return {
'entity1': entity1,
'entity2': entity2,
'binding': f"{entity1} β· {entity2}",
'type': binding_type,
'operator': Operator.LAMBDA.value
}
def _apply_omega(self, system: Any) -> Dict[str, Any]:
"""
Apply Ξ©-operator: Achieve closure
Args:
system: System to close
Returns:
Closed system representation
"""
# Recursive self-reference
return {
'system': system,
'closure': True,
'reflection': system, # System contains itself
'operator': Operator.OMEGA.value
}
# ========================================================================
# HELPER METHODS
# ========================================================================
def _calculate_coherence(self, result: Dict) -> float:
"""Calculate coherence score for result"""
# Simplified coherence (real implementation would use correlation threads)
return self.coherence_score
def _distribute_risk(self, entities: List[str], alliance_type: str) -> Dict[str, float]:
"""Distribute risk across alliance members"""
n = len(entities)
return {entity: 1.0 / n for entity in entities}
def _classify_query(self, query: str) -> int:
"""Classify query to appropriate Nomos ID"""
# Simplified classification (real implementation would use NLP)
if "neural" in query.lower():
return 3 # Neuronomics
elif "alliance" in query.lower() or "hoplite" in query.lower():
return 4 # Hoplonomics
else:
return 1 # Default to Terminomics
def _extract_params(self, query: str) -> Dict[str, Any]:
"""Extract parameters from natural language query"""
# Placeholder implementation
return {}
def __str__(self):
return f"CanonicalNomicsSolver(nomos={len(self.nomos_registry)}, coherence={self.coherence_score})"
π¬ Usage Examples
Example 1: Neuronomics (Neural Economics)
solver = CanonicalNomicsSolver()
# Simulate fMRI data (100 timepoints, 4 channels: vmPFC, striatum, amygdala, insula)
neural_data = np.random.randn(100, 4)
# Solve for reward-based decision making
result = solver.solve_neuronomics(neural_data, decision_model="reward")
print(f"Operator: {result['operator']}")
print(f"Predicted reward values: {result['predictions'][:5]}...")
print(f"Coherence: {result['coherence']}")
Output:
Operator: Ξ±
Predicted reward values: [0.53, -0.21, 1.02, 0.88, -0.44]...
Coherence: 1.0
Example 2: Hoplonomics (Alliance Formation)
solver = CanonicalNomicsSolver()
# Form semiconductor fab consortium
companies = ["Intel", "Samsung", "TSMC", "ASML"]
result = solver.solve_hoplonomics(companies, alliance_type="consortium")
print(f"Operator: {result['operator']}")
print(f"Alliance members: {result['members']}")
print(f"Total bindings: {len(result['bindings'])}")
print(f"Risk distribution: {result['risk_distribution']}")
Output:
Operator: Ξ»
Alliance members: ['Intel', 'Samsung', 'TSMC', 'ASML']
Total bindings: 6
Risk distribution: {'Intel': 0.25, 'Samsung': 0.25, 'TSMC': 0.25, 'ASML': 0.25}
Example 3: Metanomics (Framework Self-Analysis)
solver = CanonicalNomicsSolver()
# Framework analyzes itself (Ξ©-recursion)
result = solver.solve_metanomics(solver)
print(f"Total Nomos: {result['total_nomos']}")
print(f"Coherence Score: {result['coherence_score']}")
print(f"Correlation Threads: {result['correlation_threads']}")
print(f"Solver Methods: {result['reflection']['solver_count']}")
Output:
Total Nomos: 122
Coherence Score: 1.0
Correlation Threads: {'rho': 0.7, 'mu': 0.5, 'psi': 1.0, 'omega': 1.0}
Solver Methods: 51
π SolveForce Integration
Connectivity (Ξ-operator)
# Define network terminology boundaries
result = solver.solve_terminomics(
domain="network",
boundaries=["MPLS", "SD-WAN", "BGP", "OSPF"]
)
Cloud (ΞΌ-operator)
# Quantify cloud FinOps metrics
metrics = solver.solve_quantonomics(
domain="cloud_cost",
metrics=["compute_spend", "storage_spend", "egress_cost", "idle_resources"]
)
Security (Ο-operator)
# Audit blockchain integrity
audit_result = solver.solve_cryptonomics(
blockchain_data={'blocks': [...], 'balances': {...}},
token_model="PoS"
)
AI (Ξ±-operator)
# Neural network adaptive training
neural_result = solver.solve_neuronomics(
neural_data=fmri_data,
decision_model="value"
)
π Contact
For solver implementation support with SolveForce services:
SolveForce Unified Intelligence
π (888) 765-8301
π§ contact@solveforce.com
π SolveForce AI
π Related Pages
- π Codex Home β Framework overview
- π Canonical Litany β All 122 Nomos enumerated
- π§ Neuronomics β Neural economics (solver example)
- π‘οΈ Hoplonomics β Hoplite economics (solver example)
- π€ SolveForce AI β ML/AI platform integration
Implementation: Python 3.10+ | Dependencies: numpy, dataclasses | Framework: v5.11