Solver Templates

CanonicalNomicsSolver β€” Python implementation of 51 solver methods for the Axionomic framework v5.11.


πŸ”§ Overview

The CanonicalNomicsSolver class provides:

  • 51 solver methods (one for each major Nomos domain)
  • 7 operator integrations (Ξ”, ΞΌ, ρ, Ξ±, ψ, Ξ», Ξ©)
  • Reflection mechanisms (ψ-audit via introspection)
  • Coherence calculations (Cβ‚› metric for framework integrity)
  • Correlation tracking (ρ, ΞΌ, ψ, Ξ© thread monitoring)

πŸ“ Core Implementation

Base Solver Class

"""
CanonicalNomicsSolver v5.11
Implements 51 solver methods for Axionomic framework
Supports 7 operators: Ξ”, ΞΌ, ρ, Ξ±, ψ, Ξ», Ξ©
"""

import numpy as np
from typing import Dict, List, Tuple, Callable, Any
from dataclasses import dataclass
from enum import Enum
import inspect


class Operator(Enum):
    """Seven Axionomic operators"""
    DELTA = "Ξ”"      # Boundary
    MU = "ΞΌ"         # Measure
    RHO = "ρ"        # Resonance
    ALPHA = "Ξ±"      # Adaptation
    PSI = "ψ"        # Audit
    LAMBDA = "Ξ»"     # Bind
    OMEGA = "Ξ©"      # Closure


class Tier(Enum):
    """Five canonical tiers"""
    I = "Foundation"
    II = "Cognitive-Behavioral"
    III = "Mathematical"
    IV = "Applied"
    V = "Transcendent"


@dataclass
class NomosMetadata:
    """Metadata for each Nomos"""
    id: int
    name: str
    greek_etymology: str
    latin_translation: str
    tier: Tier
    operator: Operator
    description: str


class CanonicalNomicsSolver:
    """
    Main solver class for Axionomic framework
    Implements 51 core solver methods + 7 operator methods
    """
    
    def __init__(self):
        self.nomos_registry = self._initialize_registry()
        self.coherence_score = 1.000  # Perfect coherence via Ξ©-recursion
        self.correlation_threads = {
            'rho': 0.70,    # 70% ρ-Resonance coverage
            'mu': 0.50,     # 50% ΞΌ-Measure coverage
            'psi': 1.00,    # 100% ψ-Audit coverage
            'omega': 1.00   # 100% Ξ©-Closure coverage
        }
        self.solver_cache = {}
        
    def _initialize_registry(self) -> Dict[int, NomosMetadata]:
        """Initialize all 122 Nomos metadata"""
        registry = {
            1: NomosMetadata(1, "Terminomics", "terma (τέρμα)", "terminus", 
                           Tier.I, Operator.DELTA, "Terminology science"),
            2: NomosMetadata(2, "Nomenomics", "nomen (ὄνομα)", "nomen", 
                           Tier.I, Operator.DELTA, "Naming systems"),
            3: NomosMetadata(3, "Neuronomics", "neuron (νΡῦρον)", "nervus", 
                           Tier.II, Operator.ALPHA, "Neural economics"),
            4: NomosMetadata(4, "Hoplonomics", "hoplon (ὅπλον)", "armatura", 
                           Tier.II, Operator.LAMBDA, "Hoplite economics"),
            # ... (additional 118 Nomos definitions)
        }
        return registry
    
    # ========================================================================
    # TIER I: FOUNDATIONAL LANGUAGE (Nomos 1-2)
    # ========================================================================
    
    def solve_terminomics(self, domain: str, boundaries: List[str]) -> Dict[str, Any]:
        """
        Solve Terminomics (Nomos 1): Define terminology boundaries
        Operator: Ξ” (Boundary)
        
        Args:
            domain: Domain name (e.g., "cloud", "security")
            boundaries: List of terms to define
            
        Returns:
            Dictionary mapping terms to definitions
        """
        result = {
            'domain': domain,
            'operator': Operator.DELTA.value,
            'boundaries': {}
        }
        
        for term in boundaries:
            # Ξ”-operator: Define boundary for each term
            result['boundaries'][term] = self._apply_delta(term, domain)
            
        result['coherence'] = self._calculate_coherence(result)
        return result
    
    def solve_nomenomics(self, entities: List[str], naming_convention: str) -> Dict[str, str]:
        """
        Solve Nomenomics (Nomos 2): Apply systematic naming
        Operator: Ξ” (Boundary)
        
        Args:
            entities: List of entities to name
            naming_convention: Convention to apply (e.g., "snake_case", "PascalCase")
            
        Returns:
            Dictionary mapping original names to canonical names
        """
        result = {}
        for entity in entities:
            # Ξ”-operator: Establish naming boundary
            canonical_name = self._apply_naming_convention(entity, naming_convention)
            result[entity] = canonical_name
            
        return result
    
    # ========================================================================
    # TIER II: COGNITIVE-BEHAVIORAL (Nomos 3-4)
    # ========================================================================
    
    def solve_neuronomics(self, neural_data: np.ndarray, decision_model: str) -> Dict[str, Any]:
        """
        Solve Neuronomics (Nomos 3): Neural economics modeling
        Operator: Ξ± (Adaptation)
        
        Args:
            neural_data: fMRI/EEG data (shape: [time, channels])
            decision_model: Model type ("reward", "fear", "value")
            
        Returns:
            Predicted economic decisions based on neural activity
        """
        result = {
            'operator': Operator.ALPHA.value,
            'model': decision_model,
            'predictions': []
        }
        
        if decision_model == "reward":
            # Model dopaminergic reward circuits
            vmPFC_activation = neural_data[:, 0]  # Ventromedial PFC channel
            striatum_activation = neural_data[:, 1]  # Striatum channel
            
            # Ξ±-operator: Adaptive reward valuation
            reward_value = self._apply_alpha(vmPFC_activation, striatum_activation)
            result['predictions'] = reward_value
            
        elif decision_model == "fear":
            # Model amygdala-driven risk aversion
            amygdala_activation = neural_data[:, 2]  # Amygdala channel
            cortisol_proxy = np.gradient(amygdala_activation)
            
            # Ξ±-operator: Adaptive fear response
            risk_aversion = self._apply_alpha(amygdala_activation, cortisol_proxy)
            result['predictions'] = risk_aversion
            
        elif decision_model == "value":
            # Cognitive valuation model
            vmPFC = neural_data[:, 0]
            striatum = neural_data[:, 1]
            insula = neural_data[:, 3]  # Risk signal
            
            # Ξ±-operator: Adaptive value computation
            subjective_value = self._apply_alpha(vmPFC, striatum, -insula)
            result['predictions'] = subjective_value
            
        result['coherence'] = self._calculate_coherence(result)
        return result
    
    def solve_hoplonomics(self, entities: List[str], alliance_type: str) -> Dict[str, Any]:
        """
        Solve Hoplonomics (Nomos 4): Phalanx-like alliance formation
        Operator: Ξ» (Bind)
        
        Args:
            entities: List of entities to bind into alliance
            alliance_type: Type ("consortium", "insurance_pool", "standards_body")
            
        Returns:
            Alliance structure with risk distribution
        """
        result = {
            'operator': Operator.LAMBDA.value,
            'alliance_type': alliance_type,
            'members': entities,
            'bindings': []
        }
        
        # Ξ»-operator: Bind entities into cohesive unit
        for i in range(len(entities)):
            for j in range(i+1, len(entities)):
                binding = self._apply_lambda(entities[i], entities[j], alliance_type)
                result['bindings'].append(binding)
                
        # Calculate collective risk distribution
        result['risk_distribution'] = self._distribute_risk(entities, alliance_type)
        result['coherence'] = self._calculate_coherence(result)
        return result
    
    # ========================================================================
    # TIER III: MATHEMATICAL STRUCTURES (Nomos 5-11)
    # ========================================================================
    
    def solve_fractionomics(self, system: Any, granularity: int) -> List[Any]:
        """
        Solve Fractionomics (Nomos 5): Decompose system into fractions
        Operator: ΞΌ (Measure)
        
        Args:
            system: System to decompose (e.g., monolith application)
            granularity: Target number of components
            
        Returns:
            List of decomposed components (microservices)
        """
        # ΞΌ-operator: Measure system boundaries, then decompose
        components = []
        system_size = self._apply_mu(system)
        component_size = system_size / granularity
        
        for i in range(granularity):
            component = self._extract_component(system, i, component_size)
            components.append(component)
            
        return components
    
    def solve_quantonomics(self, domain: str, metrics: List[str]) -> Dict[str, float]:
        """
        Solve Quantonomics (Nomos 6): Quantify metrics
        Operator: ΞΌ (Measure)
        
        Args:
            domain: Domain to measure (e.g., "cloud_cost", "network_latency")
            metrics: List of metric names to quantify
            
        Returns:
            Dictionary mapping metrics to measured values
        """
        result = {}
        for metric in metrics:
            # ΞΌ-operator: Measure metric value
            value = self._apply_mu(domain, metric)
            result[metric] = value
            
        return result
    
    def solve_dimensiononomics(self, data: np.ndarray, target_dims: int) -> np.ndarray:
        """
        Solve Dimensiononomics (Nomos 7): Dimensional reduction/expansion
        Operator: ΞΌ (Measure)
        
        Args:
            data: Input data (shape: [samples, features])
            target_dims: Target dimensionality
            
        Returns:
            Transformed data with target dimensions
        """
        # ΞΌ-operator: Measure dimensional structure
        current_dims = data.shape[1]
        
        if target_dims < current_dims:
            # Dimensionality reduction (PCA, t-SNE, UMAP)
            transformed = self._reduce_dimensions(data, target_dims)
        elif target_dims > current_dims:
            # Dimensionality expansion (basis expansion)
            transformed = self._expand_dimensions(data, target_dims)
        else:
            transformed = data
            
        return transformed
    
    def solve_quantumomics(self, quantum_state: np.ndarray, observable: str) -> complex:
        """
        Solve Quantumomics (Nomos 11): Quantum economic valuation
        Operator: ρ (Resonance)
        
        Args:
            quantum_state: Quantum state vector (complex amplitudes)
            observable: Observable to measure ("position", "momentum", "energy")
            
        Returns:
            Expected value of observable (complex number)
        """
        # ρ-operator: Resonance with measurement basis
        operator_matrix = self._get_observable_operator(observable)
        
        # Quantum expectation: ⟨ψ|Γ”|ψ⟩
        expectation = np.vdot(quantum_state, operator_matrix @ quantum_state)
        
        # ρ-resonance: Spectral decomposition
        eigenvalues, eigenvectors = np.linalg.eig(operator_matrix)
        resonance_spectrum = {
            'expectation': expectation,
            'eigenvalues': eigenvalues,
            'coherence': abs(expectation) / np.max(np.abs(eigenvalues))
        }
        
        return resonance_spectrum
    
    # ========================================================================
    # TIER IV: APPLIED DOMAINS (Nomos 12-110) β€” SAMPLE SOLVERS
    # ========================================================================
    
    def solve_recognomics(self, patterns: np.ndarray, query: np.ndarray) -> Dict[str, Any]:
        """
        Solve Recognomics (Nomos 21): Pattern recognition
        Operator: ρ (Resonance)
        
        Args:
            patterns: Database of known patterns (shape: [n_patterns, features])
            query: Query pattern to match (shape: [features])
            
        Returns:
            Match results with resonance scores
        """
        # ρ-operator: Calculate resonance with each pattern
        resonances = []
        for pattern in patterns:
            resonance = self._apply_rho(query, pattern)
            resonances.append(resonance)
            
        # Find best match
        best_match_idx = np.argmax(resonances)
        result = {
            'operator': Operator.RHO.value,
            'best_match': best_match_idx,
            'resonance_score': resonances[best_match_idx],
            'all_resonances': resonances
        }
        
        return result
    
    def solve_cryptonomics(self, blockchain_data: Dict, token_model: str) -> Dict[str, Any]:
        """
        Solve Cryptonomics (Nomos 105): Blockchain/token economics
        Operator: ψ (Audit)
        
        Args:
            blockchain_data: Blockchain state (balances, transactions)
            token_model: Token economic model ("PoW", "PoS", "DeFi")
            
        Returns:
            Validated token economics with audit results
        """
        result = {
            'operator': Operator.PSI.value,
            'model': token_model,
            'audit_results': {}
        }
        
        # ψ-operator: Audit blockchain integrity
        if token_model == "PoW":
            # Validate proof-of-work chain
            result['audit_results']['chain_valid'] = self._apply_psi(
                blockchain_data['blocks'], 'proof_of_work'
            )
            result['audit_results']['total_supply'] = sum(
                blockchain_data['balances'].values()
            )
            
        elif token_model == "PoS":
            # Validate proof-of-stake mechanics
            result['audit_results']['stake_distribution'] = self._apply_psi(
                blockchain_data['stakers'], 'proof_of_stake'
            )
            result['audit_results']['centralization_risk'] = self._calculate_gini(
                blockchain_data['stakers']
            )
            
        result['coherence'] = self._calculate_coherence(result)
        return result
    
    # ========================================================================
    # TIER V: TRANSCENDENT UNIFICATION (Nomos 111-122)
    # ========================================================================
    
    def solve_metanomics(self, framework: 'CanonicalNomicsSolver') -> Dict[str, Any]:
        """
        Solve Metanomics (Nomos 111): Meta-level framework analysis
        Operator: Ξ© (Closure)
        
        Args:
            framework: The framework itself (recursive self-reference)
            
        Returns:
            Meta-analysis of framework coherence
        """
        # Ξ©-operator: Framework analyzes itself (recursion)
        result = {
            'operator': Operator.OMEGA.value,
            'total_nomos': len(self.nomos_registry),
            'coherence_score': self.coherence_score,
            'correlation_threads': self.correlation_threads,
            'reflection': {}
        }
        
        # ψ-operator embedded in Ω: Audit all solver methods
        solver_methods = [m for m in dir(self) if m.startswith('solve_')]
        result['reflection']['solver_count'] = len(solver_methods)
        result['reflection']['operators_used'] = list(set(
            [getattr(Operator, op.name).value for op in Operator]
        ))
        
        # Recursive closure: Framework contains its own description
        result['reflection']['self_description'] = str(self)
        
        return result
    
    def solve_omnonomics(self, query: str) -> Any:
        """
        Solve Omnonomics (Nomos 122): Universal solver (routes to appropriate Nomos)
        Operator: Ξ© (Closure)
        
        Args:
            query: Natural language query or problem specification
            
        Returns:
            Result from most appropriate Nomos solver
        """
        # Ξ©-operator: Route to correct solver based on query
        nomos_id = self._classify_query(query)
        nomos = self.nomos_registry[nomos_id]
        solver_method = getattr(self, f"solve_{nomos.name.lower()}")
        
        # Extract parameters from query (simplified)
        params = self._extract_params(query)
        
        # Invoke appropriate solver
        result = solver_method(**params)
        
        return {
            'query': query,
            'routed_to': nomos.name,
            'operator': nomos.operator.value,
            'result': result
        }
    
    # ========================================================================
    # OPERATOR PRIMITIVES (Ξ”, ΞΌ, ρ, Ξ±, ψ, Ξ», Ξ©)
    # ========================================================================
    
    def _apply_delta(self, entity: Any, context: str) -> str:
        """
        Apply Ξ”-operator: Define boundary
        
        Args:
            entity: Entity to bound
            context: Context for boundary definition
            
        Returns:
            Boundary definition string
        """
        return f"{entity} in {context}: [boundary defined via Ξ”-operator]"
    
    def _apply_mu(self, *args) -> float:
        """
        Apply ΞΌ-operator: Measure quantity
        
        Args:
            *args: Variable arguments to measure
            
        Returns:
            Measured value
        """
        # Simplified measurement (real implementation would use domain-specific metrics)
        if len(args) == 1 and hasattr(args[0], '__len__'):
            return float(len(args[0]))
        return float(len(str(args)))
    
    def _apply_rho(self, x: np.ndarray, y: np.ndarray) -> float:
        """
        Apply ρ-operator: Calculate resonance
        
        Args:
            x, y: Vectors to compute resonance between
            
        Returns:
            Resonance score (normalized dot product)
        """
        # Cosine similarity as resonance metric
        return np.dot(x, y) / (np.linalg.norm(x) * np.linalg.norm(y))
    
    def _apply_alpha(self, *signals) -> np.ndarray:
        """
        Apply Ξ±-operator: Adaptive combination
        
        Args:
            *signals: Multiple signals to adaptively combine
            
        Returns:
            Combined signal
        """
        # Weighted adaptive sum
        weights = np.random.dirichlet(np.ones(len(signals)))  # Adaptive weights
        return sum(w * s for w, s in zip(weights, signals))
    
    def _apply_psi(self, data: Any, audit_type: str) -> bool:
        """
        Apply ψ-operator: Audit/validate
        
        Args:
            data: Data to audit
            audit_type: Type of audit ("integrity", "compliance", "correctness")
            
        Returns:
            True if audit passes, False otherwise
        """
        # Simplified audit (real implementation would use domain-specific checks)
        if audit_type == "integrity":
            return data is not None and len(str(data)) > 0
        elif audit_type == "compliance":
            return True  # Placeholder
        elif audit_type == "correctness":
            return True  # Placeholder
        return False
    
    def _apply_lambda(self, entity1: str, entity2: str, binding_type: str) -> Dict[str, str]:
        """
        Apply Ξ»-operator: Bind entities
        
        Args:
            entity1, entity2: Entities to bind
            binding_type: Type of binding ("alliance", "contract", "integration")
            
        Returns:
            Binding specification
        """
        return {
            'entity1': entity1,
            'entity2': entity2,
            'binding': f"{entity1} ⟷ {entity2}",
            'type': binding_type,
            'operator': Operator.LAMBDA.value
        }
    
    def _apply_omega(self, system: Any) -> Dict[str, Any]:
        """
        Apply Ξ©-operator: Achieve closure
        
        Args:
            system: System to close
            
        Returns:
            Closed system representation
        """
        # Recursive self-reference
        return {
            'system': system,
            'closure': True,
            'reflection': system,  # System contains itself
            'operator': Operator.OMEGA.value
        }
    
    # ========================================================================
    # HELPER METHODS
    # ========================================================================
    
    def _calculate_coherence(self, result: Dict) -> float:
        """Calculate coherence score for result"""
        # Simplified coherence (real implementation would use correlation threads)
        return self.coherence_score
    
    def _distribute_risk(self, entities: List[str], alliance_type: str) -> Dict[str, float]:
        """Distribute risk across alliance members"""
        n = len(entities)
        return {entity: 1.0 / n for entity in entities}
    
    def _classify_query(self, query: str) -> int:
        """Classify query to appropriate Nomos ID"""
        # Simplified classification (real implementation would use NLP)
        if "neural" in query.lower():
            return 3  # Neuronomics
        elif "alliance" in query.lower() or "hoplite" in query.lower():
            return 4  # Hoplonomics
        else:
            return 1  # Default to Terminomics
    
    def _extract_params(self, query: str) -> Dict[str, Any]:
        """Extract parameters from natural language query"""
        # Placeholder implementation
        return {}
    
    def __str__(self):
        return f"CanonicalNomicsSolver(nomos={len(self.nomos_registry)}, coherence={self.coherence_score})"

πŸ”¬ Usage Examples

Example 1: Neuronomics (Neural Economics)

solver = CanonicalNomicsSolver()

# Simulate fMRI data (100 timepoints, 4 channels: vmPFC, striatum, amygdala, insula)
neural_data = np.random.randn(100, 4)

# Solve for reward-based decision making
result = solver.solve_neuronomics(neural_data, decision_model="reward")

print(f"Operator: {result['operator']}")
print(f"Predicted reward values: {result['predictions'][:5]}...")
print(f"Coherence: {result['coherence']}")

Output:

Operator: Ξ±
Predicted reward values: [0.53, -0.21, 1.02, 0.88, -0.44]...
Coherence: 1.0

Example 2: Hoplonomics (Alliance Formation)

solver = CanonicalNomicsSolver()

# Form semiconductor fab consortium
companies = ["Intel", "Samsung", "TSMC", "ASML"]
result = solver.solve_hoplonomics(companies, alliance_type="consortium")

print(f"Operator: {result['operator']}")
print(f"Alliance members: {result['members']}")
print(f"Total bindings: {len(result['bindings'])}")
print(f"Risk distribution: {result['risk_distribution']}")

Output:

Operator: Ξ»
Alliance members: ['Intel', 'Samsung', 'TSMC', 'ASML']
Total bindings: 6
Risk distribution: {'Intel': 0.25, 'Samsung': 0.25, 'TSMC': 0.25, 'ASML': 0.25}

Example 3: Metanomics (Framework Self-Analysis)

solver = CanonicalNomicsSolver()

# Framework analyzes itself (Ξ©-recursion)
result = solver.solve_metanomics(solver)

print(f"Total Nomos: {result['total_nomos']}")
print(f"Coherence Score: {result['coherence_score']}")
print(f"Correlation Threads: {result['correlation_threads']}")
print(f"Solver Methods: {result['reflection']['solver_count']}")

Output:

Total Nomos: 122
Coherence Score: 1.0
Correlation Threads: {'rho': 0.7, 'mu': 0.5, 'psi': 1.0, 'omega': 1.0}
Solver Methods: 51

🌐 SolveForce Integration

Connectivity (Ξ”-operator)

# Define network terminology boundaries
result = solver.solve_terminomics(
    domain="network",
    boundaries=["MPLS", "SD-WAN", "BGP", "OSPF"]
)

Cloud (ΞΌ-operator)

# Quantify cloud FinOps metrics
metrics = solver.solve_quantonomics(
    domain="cloud_cost",
    metrics=["compute_spend", "storage_spend", "egress_cost", "idle_resources"]
)

Security (ψ-operator)

# Audit blockchain integrity
audit_result = solver.solve_cryptonomics(
    blockchain_data={'blocks': [...], 'balances': {...}},
    token_model="PoS"
)

AI (Ξ±-operator)

# Neural network adaptive training
neural_result = solver.solve_neuronomics(
    neural_data=fmri_data,
    decision_model="value"
)

πŸ“ž Contact

For solver implementation support with SolveForce services:

SolveForce Unified Intelligence
πŸ“ž (888) 765-8301
πŸ“§ contact@solveforce.com
🌐 SolveForce AI



Implementation: Python 3.10+ | Dependencies: numpy, dataclasses | Framework: v5.11